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Abstract

The clinical, social and financial burden of Autism Spectrum Disorder (ASD) is staggering. We 

urgently need valid and reliable biomarkers for diagnosis and effective treatments targeting the 

often debilitating symptoms. Transcranial Magnetic Stimulation (TMS) is beginning to be used by 

a number of centers worldwide and may represent a novel technique with both diagnostic and 

therapeutic potential. Here we critically review the current scientific evidence for the use of TMS 

in ASD. Though preliminary data suggests promise, there is simply not enough evidence yet to 

conclusively support the clinical widespread use of TMS in ASD, neither diagnostically nor 

therapeutically. Carefully designed and properly controlled clinical trials are warranted to evaluate 

the true potential of TMS in ASD.
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The Centers for Disease Control and Prevention currently estimate the prevalence of Autism 

Spectrum Disorder (ASD) in the United States at 1 in 88 children (1 in 54 boys and 1 in 252 

girls) (Baio, 2012) . This is more children than are affected by diabetes, AIDS, cancer, 

cerebral palsy, cystic fibrosis, muscular dystrophy and Down syndrome combined (Child 

and Adolescent Health Measurement Initiative, 2012) ASD is diagnosed clinically, based on 

the presence of key behavioral symptoms, but the underlying brain mechanisms causing 

these symptoms are unknown and there currently exists no cure. Most empirically supported 

treatments for the core symptoms of ASD focus on early intensive behavioral interventions 

(Reichow, 2012). Pharmacological treatments are at times effective in treating secondary 

and comorbid features of ASD, such as aggression or hyperactivity and attention deficit, or 

epilepsy (Hampson, Gholizadeh, & Pacey, 2012), but there is currently no pharmacotherapy 

shown to effectively treat the core symptoms of ASD (see Oberman, 2012 for a review).
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With some clinical trials of pharmaceuticals or other interventions for core ASD symptoms 

ongoing and many more in planning stages, early and objective ASD diagnosis and 

improved understanding of the underlying ASD pathophysiology will be necessary. One 

way this may be accomplished is with transcranial magnetic stimulation (TMS), a 

noninvasive method for cortical stimulation that may avail to the field a physiologic 

biomarker to aid with ASD diagnosis and perhaps obtain deeper insight into ASD 

physiology. As well, and relevant to our report, TMS may have therapeutic prospects as 

well.

Here we critically review the current state of scientific knowledge on the uses of TMS in 

patients with ASD. In the first part of this review, we give a brief introduction to TMS, its 

safety, its clinical potential as well as its limitations. The second section focuses on the 

current knowledge about the etiology of ASD and how TMS can be utilized to study the 

neurobiological substrates, noninvasively, in patients across the autism spectrum. Last, we 

summarize the current evidence for the safety, tolerability and efficacy of repetitive TMS 

(rTMS) as a therapeutic intervention in ASD.

Studies included in this review were obtained using a PubMed search in May of 2013 with 

the following key words “TMS autism”, “TMS Asperger” “transcranial magnetic 

stimulation autism” and “transcranial magnetic stimulation Asperger”. A total of 17 studies 

were identified that applied any form of TMS to individuals with ASD.

TMS Basics

All TMS devices have the same essential components: a large capacitor, a control 

mechanism that enables the capacitor to be rapidly discharged, and a conductive coil 

(usually hand-held) through which the current travels to generate a powerful and fluctuating 

magnetic field (Barker, 1999). Through a process of electromagnetic induction, this rapid 

pulse of electrical current induces a rapidly fluctuating magnetic field, which in turn induces 

an electrical current in the underlying brain tissue (Barker, Jalinous, & Freeston, 1985; 

Wagner, Valero-Cabre, & Pascual-Leone, 2007). How much brain tissue is stimulated is 

dependent on the shape of the coil as well as the intensity of the stimulation (amount of 

current discharged by the machine) (Pascual-Leone, Davey., Rothwell, Wasserman, & Puri, 

2002). The first TMS coils were large circular loops with limited focality of stimulation 

(Barker, Jalinous, & Freeston, 1985). Recent developments, however, have led to coils that 

instead are a figure-of-eight shape and induce a sufficient amount of current to depolarize 

cortical neurons in approximately a 1–2 cm2 region lying directly under the intersection of 

the figure-of-eight (Brasil-Neto, McShane, Fuhr, Hallett, & Cohen, 1992). We note that 

even though the electrical current induced by TMS on the scalp attenuates very rapidly 

(Rudiak & Marg, 1994), the behavioral effects of TMS are not limited to functions that are 

mediated by the relatively focal cortical regions, directly under the coil, but also brain areas 

whose activity is modulated by the stimulated regions through connectivity. Thus TMS to 

any one single region of cortex can affect an entire network or system.

TMS can be used both experimentally and therapeutically. In the experimental domain TMS 

can be applied in single pulses to depolarize a small population of neurons in a targeted 
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brain region (Barker et al., 1985). This protocol can be used, for example, to map cortical 

motor outputs, study central motor conduction time, or evaluate the cortical silent period (a 

measure of intracortical inhibition) all of which may be affected by pathologies of the 

central nervous system such as ASD (Kobayashi & Pascual-Leone, 2003). TMS can also be 

applied in pairs of pulses (paired pulse stimulation, ppTMS) (Claus, Weis, Jahnke, Plewe, & 

Brunholzl, 1992; Kujirai, et al., 1993; Valls-Sole, Pascual-Leone, Wassermann, & Hallett, 

1992; Ziemann, 1999), where two pulses are presented in rapid succession to study 

intracortical inhibition and facilitation. ppTMS measures may be particularly informative in 

detecting abnormalities in excitation-inhibition ratios in ASD, especially given the current 

theories related to the role of GABA signalling (Blatt & Fatemi; Hussman, 2001; Pizzarelli 

& Cherubini, 2011) and E/I ratios (Rubenstein & Merzenich, 2003) in ASD.

Trains of repeated TMS (rTMS) pulses can be applied at various stimulation frequencies and 

patterns to modulate local cortical excitability beyond the duration of the stimulation itself 

(some common rTMS protocols include 1Hz, 5Hz, Paired Associative Stimulation, and 

Theta Burst Stimulation (TBS) protocols). Depending on the parameters of stimulation the 

excitability can be either facilitated or suppressed (Pascual-Leone, Valls-Sole, Wassermann, 

& Hallett, 1994). The after-effects of rTMS are thought to be related to changes in efficacy 

(in either the positive or negative direction) of synaptic connections of the neurons being 

stimulated (Fitzgerald, Fountain, & Daskalakis, 2006; Hoogendam, Ramakers, & Di 

Lazzaro, 2010), thus have been used to study cortical plasticity mechanisms in a number of 

populations (Pascual-Leone et al., 2011).

TMS protocols have been developed to study both Hebbian and non-Hebbian plasticity. One 

such protocol, paired associative stimulation (PAS) is modeled after animal electrical 

stimulation paradigms whereby long-term potentiation-like (LTP-like) and long-term 

depression-like (LTD-like) plasticity is induced through repeated pairs of electrical 

peripheral nerve and cortical stimulation by TMS (Stefan, Kunesch, Cohen, Benecke, & 

Classen, 2000). When these pairs of stimulation are presented with a defined interstimulus 

interval, the resulting motor evoked potential induced by a single pulse of TMS is modulated 

(Classen, et al., 2004). The amount of modulation that is induced by this pairing is a putative 

measure of NMDA dependent Hebbian plasticity of the corticospinal tract (Ziemann, 2004).

Another common TMS paradigm designed to investigate plasticity mechanisms is theta 

burst stimulation (TBS). Unlike PAS, TBS is modeled after in vitro protocols that induce 

non-Hebbian plasticity by introducing brief rapid trains of stimulation to the cortex. 

Physiologic and pharmacologic studies of TBS in humans reveal involvement of 

glutamatergic and GABAergic mediators consistent with LTP-like and LTD-like 

mechanisms, and the effects and their time-course are consistent with the notion that TBS 

indexes mechanisms of cortical non-Hebbian synaptic plasticity (Cardenas-Morales, Nowak, 

Kammer, Wolf, & Schonfeldt-Lecuona, 2010; Huang, Chen, Rothwell, & Wen, 2007; 

Huang, Edwards, Rounis, Bhatia, & Rothwell, 2005).

Due to the capacity to induce long-term changes in brain activity, rTMS is considered in the 

treatment of a number of neurological and psychiatric conditions (Kobayashi & Pascual-

Leone, 2003) such as major depression (Schutter, 2009) where it has been FDA approved, 
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Parkinson’s Disease (Kimura, et al., 2011), Alzheimer’s Disease (Freitas, Mondragon-

Llorca, & Pascual-Leone; Nardone, et al., 2011), and epilepsy (Sun, et al., 2012). Notably, 

the degree and direction of the effect of rTMS, both at the level of the brain and behavior, 

depends on a number of factors. This is not a one-size-fits-all treatment and the difference 

between having a positive effect, no effect, or a negative effect on the desired symptom 

depends on the exact parameters (location of stimulation, intensity of stimulation, frequency 

of stimulation, number of sessions, and frequency of sessions, just to name a few). Though 

there is significant potential for the use of TMS in clinical disorders, such as those above as 

well as others, (for current reviews see Kim, Pesiridou, & O’Reardon, 2009; Machado et al., 

2008; Schulz, Gerloff, & Hummel, 2013; Wassermann & Zimmermann, 2012) most of the 

evidence for therapeutic potential comes from small scale studies and needs further support 

from larger-scale, double blind clinical trials to elucidate its true potential.

In summary, TMS has the potential to induce either acute or long-lasting changes to the 

cortical functions. The exact effect that is induced is dependent on parameters including 

location of stimulation, coil geometry and orientation, intensity and frequency of the 

magnetic pulses. With these capabilities, TMS is a valuable tool for both the researcher and 

the clinician looking for a noninvasive way to study and treat neurological and 

psychological disorders where the behavioral disability is due to altered cortical excitability 

or plasticity. As described below, ASD may represent such a disorder where TMS may be 

used both to study and potentially treat some of the symptoms.

TMS Safety

TMS is considered quite safe if applied within current safety guidelines; however, TMS 

does pose some risk for adverse side effects (Rossi, Hallett, Rossini, & Pascual-Leone, 

2009). To highlight possible contraindications that might put a patient at risk for an adverse 

effect, it is recommended that a short safety check list be used to screen patients before they 

undergo TMS investigations, including, a history of seizures, syncope, head injury, brain 

diseases or medications associated with increase seizure risk, the presence of metal in the 

cranium, implanted biomedical devices, and pregnancy. All of these conditions should be 

considered only relative contraindication and the risk–benefit ratio of the procedure should 

be carefully considered before the patients undergo TMS.

Seizures are the most serious possible TMS-related adverse event. Less than 20 cases of 

TMS induced seizures have been reported out of tens of thousands of examined subjects 

over the past 25 years. Overall the risk of seizure is considered to be less than 0.01% (Rossi, 

et al., 2009). However, it should be noted that individuals with ASD have a greater than 

average prevalence of epilepsy, approximately 30% (Spence & Schneider, 2009), and EEG 

abnormalities are present in approximately 60% of children with ASD who do not have 

epilepsy (Chez, et al., 2006).

To date no seizures have been reported during TMS in any individual with ASD, and given 

the paucity of TMS safety data in ASD, it is currently reasonable to default to the safety 

guidelines established by the “Safety of TMS Consensus Group” (Rossi et al., 2009). We 
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anticipate in the coming years as more patient populations are being studied using TMS that 

specialized guidelines for ASD and other patient groups will be forthcoming.

Some patients have also experienced presyncopal reactions following stimulation 

(Grossheinrich, et al., 2009), but it is hard to disentangle the direct effects of stimulation 

from that of a vasovagal response to anxiety or discomfort in these cases. Other, more 

common side effects that have been associated with TMS are considered relatively minor 

and include headache, neck pain, discomfort at the site of stimulation, and transient 

increases in auditory thresholds. TMS can also cause transient or long-lasting changes in 

cognition or mood. These effects are often the desired effects of the stimulation, however, 

one must keep in mind that any given TMS protocol may have varying effects in both 

degree and direction in any given individual, especially when that individual has a 

preexisting neuropsychological disorder. Thus, one must be very cautious when applying 

TMS, especially rTMS to a participant and follow established safety guidelines (Rossi, et al., 

2009). Though relatively few patients with ASD (approximately 250) have participated in a 

TMS protocol for either investigative or therapeutic purposes, it appears thus far that the 

distribution of side effects follows that seen in the general population. As with any other 

condition, however, factors including medications as well as medical and family medical 

history needs to be taken into consideration when determining risk for adverse events in any 

given individual.

Autism: A neurodevelopmental disorder

Development of novel treatment for such complex and heterogenous disorders as ASD 

requires a deeper understanding of the underlying pathophysiology. Such efforts may not 

only catalyze the identification of new and effective therapeutic interventions, may also 

deliver valuable biomarkers for diagnosis and longitudinal assessment of disease 

progression and treatment efficacy.

It is now generally accepted that the ASD symptoms emerge as a result of abnormal neural 

development. There is much debate in the literature, however, of the exact neuropathological 

etiology. Some have suggested that abnormalities in specific functionally defined systems, 

such as the mirror neuron system, underlie ASD (Oberman & Ramachandran, 2007; 

Williams, et al., 2006). Others have focused on abnormalities in brain growth (Courchesne, 

et al., 2001), connectivity (Geschwind & Levitt, 2007), excitation and inhibition (Rubenstein 

& Merzenich, 2003; Casanova, Buxhoeveden, Switala, & Roy, 2002) and synaptic plasticity 

(Dolen & Bear, 2009; Markram, Rinaldi, & Markram, 2007; Oberman & Pascual-Leone, 

2008). Though all of these theories have been supported by empirical data the exact 

direction (too much or too little), conditions under which any of these abnormalities are 

present and heterogeneity of the pathology across individuals makes it difficult to make 

strong claims implicating any single causal mechanism. What is clear is that multiple brain 

systems are anatomically and functionally different in individuals with ASD as compared to 

matched typically developing individuals.

The exact etiology is unknown in most individuals with ASD, and is likely a combination of 

multiple genetic and environmental factors. Recently, our group and others have focused on 
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the role of abnormal cortical excitability and plasticity in the pathogenesis of ASD 

(Oberman, Rotenberg, & Pascual-Leone, in press; Oberman et al., 2012; Rubenstein & 

Merzenich, 2003; Markram et al., 2007). Multiple lines of evidence support the theory of 

altered plasticity in ASD. Firstly, most candidate genes linked to ASD play a role in 

developmental and experience-dependent plasticity. ((Akaneya, Tsumoto, Kinoshita, & 

Hatanaka, 1997; Huber, Sawtell, & Bear, 1998; Jiang, et al., 2001; Korte, et al., 1995; 

Patterson, et al., 1996); (Perry, et al., 2001);(Durand, et al., 2007; Jamain, et al., 2003; 

Morrow, et al., 2008);.(Cook, 2001; Lamb, Moore, Bailey, & Monaco, 2000; Persico & 

Bourgeron, 2006). In addition, single gene disorders associated with autism implicate 

proteins which play important roles in synaptic plasticity (Dolen & Bear, 2009). Animal 

ASD models also reveal abnormal plasticity mechanisms (reviewed in(Tordjman, et al., 

2007) in models of both syndromic ((Dani, et al., 2005; Huber, Gallagher, Warren, & Bear, 

2002) and nonsyndromic forms of ASD (Gogolla, et al., 2009; Baudouin et al., 2012).

Consistent with the role of altered cortical development in ASD, regions related to language 

production and social skills in the frontal and prefrontal cortex have a spike in 

synaptogenesis and plasticity between years 1 and 3 (Huttenlocher, 2002) when autistic 

symptoms related to these processes usually become apparent. The specific pathology of 

synapse maturation and plasticity during development seen in ASD has been proposed to 

lead to an imbalance of excitation and inhibition, and specifically a disproportionately high 

level of excitation (Rubenstein & Merzenich, 2003). Multiple post mortem studies note a 

reduction in GABAergic receptors (Fatemi, Folsom, Reutiman, & Thuras, 2009; Fatemi, et 

al., 2010; Fatemi, Reutiman, Folsom, & Thuras, 2009) as well as a 50% reduction in 

enzymes that synthesize GABA (glutamic acid decarboxylase (GAD) 65 and 67) (Fatemi, et 

al., 2002; Yip, Soghomonian, & Blatt, 2007) in individuals with autism. Additionally, recent 

animal studies suggest that a modulation in this balance toward excitation in the mouse 

medial prefrontal cortex resulted in autistic-like behaviors and subsequent compensatory 

elevation of inhibitory factors partially rescued the social deficits caused by the excitation/

inhibition imbalance (Yizhar, et al., 2011). Thus, modulation of cortical excitability in 

frontal and prefrontal cortex may represent potential targets for TMS studies and rTMS 

clinical applications.

TMS as an investigative tool

When single pulses are applied to the primary motor cortex a TMS-induced motor evoked 

potential can be recorded using electromyography (EMG) from the contralateral muscle 

group corresponding to the region of primary motor cortex that is being stimulated. The 

physiological effect of TMS to other cortical regions can be evaluated by combining TMS 

and EEG and measuring evoked potentials and other EEG-related indices of cortical 

activation (Thut, Ives, Kampmann, Pastor, & Pascual-Leone, 2005).

Using these protocols, several groups have begun to use TMS as an experimental tool to 

understand ASD pathophysiology (Summarized in Table 1). The results of these studies 

have shown, consistent with findings from other approaches, that a number of basic 

mechanisms and circuits are atypical in individuals with ASD while other measures appear 

to be normal. Specifically, multiple studies have reported normal measures of basic 

Oberman et al. Page 6

J Autism Dev Disord. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



excitability and intracortical inhibition and facilitation of the primary motor cortex and 

cortico-spinal projections as measured by resting and active motor threshold (Enticott, et al., 

2013a; Oberman et al., 2010; Theoret, et al., 2005), single pulse (Enticott, et al., 2012a; 

Oberman, et al., 2012) and paired-pulse (Enticott, et al., 2013a; Jung, et al., 2013; Theoret, 

et al., 2005) TMS paradigms. However, two studies have reported heterogeneity in the 

response to ppTMS with some individuals with ASD showing a reduced response (and in 

some cases paradoxical facilitation) in response to the short intracortical inhibition (SICI) 

paradigm (Enticott, et al., 2013a; Enticott, et al., 2010; Oberman, et al., 2010) and long 

intracortical inhibition (LICI) paradigm (Oberman, et al., 2010) indicating that some 

individuals may have an insufficient amount of inhibitory tone.

In addition to studying cortical excitability and intracortical inhibition, TMS can also be 

used to investigate cortical and cortico-spinal plasticity mechanisms. These mechanisms 

have also been implicated in the ASD pathophysiology (Markram, et al., 2007; Oberman & 

Pascual-Leone, 2008).

In a recent study using PAS, researchers were unable to induce a significant LTP-like plastic 

modulation of the motor cortex in high-functioning individuals with ASD. This study 

suggests that Hebbian plasticity mechanisms may be abnormal in individuals with ASD 

(Jung, et al., 2013). Interestingly, a study recently published using the TBS plasticity 

paradigm found opposite results. Specifically, in a study conducted by Oberman and 

colleagues (Oberman, et al., 2012; Oberman, et al., 2010) researchers found significantly 

greater and longer-lasting modulation of excitability in the ASD group as compared to 

neurotypical individuals indicating a greater propensity for plastic change. Furthermore, the 

authors (Oberman, et al., 2012) found that this enhanced modulation following TBS was 

extremely reliable across cohorts leading the authors to conclude that a dysfunction in 

plasticity may represent the enigmatic mechanism underlying ASD (Oberman & Pascual-

Leone, 2008) and may provide a potential diagnostic biomarker for this disorder (Oberman, 

et al., 2012).

Another series of studies using TMS have combined single-pulse paradigms with behavioral 

tasks to evaluate the effect of visual stimuli on cortical excitability. Though individuals with 

ASD typically have comparable cortico-spinal excitability at baseline and during the 

observation of static visual stimuli and two handed interactive stimuli (Enticott, et al., 

2012a; Enticott et al., 2013b; Theoret, et al., 2005), the observation of hand stimuli engaged 

in specific motor movements or receiving a painful needle prick does not induce the 

expected corticospinal modulation that is seen in neurotypical individuals (Enticott, et al., 

2012a; Minio-Paluello et al., 2009; Theoret, et al., 2005). These findings have been used as 

support for the theories suggesting a possible partial, not global, dysfunction in the mirror 

neuron system in ASD.

TMS as a therapeutic tool

The aforementioned TMS protocols are particularly useful in studying the ASD 

pathophysiology, especially in light of the current theories suggesting a role of altered 

excitation/inhibition balance and aberrant synaptic plasticity in ASD. In addition to its 

Oberman et al. Page 7

J Autism Dev Disord. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



potential as a research tool, the potential of rTMS to induce a long-lasting modulation of 

cortical excitability and plasticity offers the possibility of its use for therapeutic purposes in 

neurological and psychological conditions thought to be a result of altered excitability or 

plasticity of specific neural circuits. Again, we underscore that rTMS physiologic effects 

will differ depending on the type of protocol used (as determined by frequency and intertrain 

interval) and where it is applied.

Though the physiological effects of rTMS are most often quantified in the motor cortex, 

there is much evidence that the long-lasting effects of rTMS are not limited to this region. 

Studies examining behavioral performance prior to and following rTMS have shown rTMS-

induced changes in sensory (Kosslyn, et al., 1999), cognitive (Hilgetag, Theoret, & Pascual-

Leone, 2001; Mottaghy, Doring, Muller-Gartner, Topper, & Krause, 2002), and affective 

processing (see Lee, Blumberger, Fitzgerald, Daskalakis, & Levinson, 2012 for a review). 

Low frequency protocols and a specific type of TBS (continuous, cTBS) generally induce 

lasting suppression of the excitability, while high-frequency and a different type of TBS 

(intermittent, iTBS) generally induce lasting facilitation (Maeda, Keenan, Tormos, Topka, & 

Pascual-Leone, 2000). However, it should be noted that these effects are state-dependant and 

there is significant intersubject and intrasubject variability (Silvanto and Pascual-Leone, 

2008). Thus, in order to induce the desired effect, one must consider the brain region, as 

even a small shift in the targeted region may greatly affect the behavioral impact, the current 

state of the stimulated cortex as state-dependent changes have been observed, and the exact 

protocol that is being applied as opposite effects can be induced by even slight modifications 

of the parameters.

Treatment of depression is the most thoroughly studied therapeutic application of rTMS. 

Protocols have been developed that target left dorsolateral prefrontal cortex (DLPFC) with 

high frequency (10 or 20 Hz) stimulation and result in significant alleviation of depressive 

symptoms compared to sham stimulation (see Schutter, 2009 for a recent meta-analysis). A 

device capable of applying this type of stimulation has now been approved by the FDA for 

treatment of medication resistant depression (Neurostar TMS Therapy, Neuronetics, 

Malvern, PA). A different protocol involving low-frequency repetitive stimulation to right 

DLPFC has also been shown to be effective for depression (Fitzgerald, Hoy, Daskalakis, & 

Kulkarni, 2009; Isenberg, et al., 2005; Stern, Tormos, Press, Pearlman, & Pascual-Leone, 

2007), but has yet to receive FDA approval. Though the Neurostar TMS Therapy (Malvern, 

PA) is the only FDA approved TMS device and therapeutic protocol, the potential of rTMS 

to improve symptoms of many other neurological and psychiatric diseases is beginning to be 

explored through research studies, clinical trials, and off-label treatments.

Specifically as it relates to ASD, recent studies from two sites in the United States (Harvard 

Medical School, Boston, MA and University of Louisville School of Medicine, Louisville, 

KY) and one site in Australia (Monash University, Melbourne, Australia) have reported 

preliminary data suggesting an improvement in both physiological indices and specific 

behavioral symptoms following rTMS (Summarized in Table 2).

The first of these studies, was based on the finding that individuals with ASD showed 

abnormal structure of minicolumns with reduced neuronal size and increased density 
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attributable to reductions in the inhibitory peripheral neuropil space (Casanova, et al., 2002). 

This finding was most prominent in the prefrontal cortex (Casanova et al., 2006). Thus, 

using a rTMS protocol aimed at increasing inhibitory tone, Sokhadze and colleagues 

(Sokhadze, et al., 2009) applied low-frequency (0.5 Hz, 150 pulses) stimulation to left 

DLPFC two times per week for three weeks in a small sample of eight individuals with 

ASD. The results of this first study showed a normalization in event-related potentials 

(ERPs) and induced gamma frequency electroencephalographic (EEG) activity over frontal 

and parietal sites and a reduction in repetitive-ritualistic behavior as reported by their 

caregivers. This result was quite promising, though the study should be considered 

extremely preliminary given its small sample size and lack of sham control condition. 

Following this initial study, the same group conducted several follow-up studies with 

slightly larger samples. In the first of these follow-up studies the group replicated their 

previous finding of normalized ERPs and a reduction in repetitive-ritualistic behaviors 

following the same protocol (Sokhadze, et al., 2010) in 13 individuals with ASD. In the 

second follow-up study this same group applied bilateral low-frequency TMS (1Hz) 

whereby TMS was applied once a week for 12 weeks with the first six treatments to the left 

DLPFC and the next six to the right DLPFC in 16 patients with ASD. EEG and behavioral 

evaluations pre- and post-rTMS revealed normalization of induced gamma activity and a 

reduction in both repetitive behaviors and irritability(Baruth, et al., 2010). Using this same 

protocol, this group explored error monitoring pre- and post rTMS and found improvements 

in both ERP indices and behavioral measures of error monitoring following 1 Hz stimulation 

once a week first to left then to right DLPFC in 20 individuals with ASD (Sokhadze, et al., 

2012). Lastly, using a similar design the same group also recently published a paper 

describing improvements in ERP indices of visual processing, accuracy on a selective 

attention task, and behavioral measures of repetitive behavior and irritability of 25 

individuals with ASD following the 12-week protocol described above (Casanova et al., 

2012). Again, these studies provide promising preliminary data for the use of low-frequency 

rTMS to DLPFC for the alleviation of aberrant behavior and physiological indices in ASD, 

but are limited by small sample size (additionally, as all of these studies came out of the 

same lab, it is unclear whether the same individuals took part in multiple studies) and 

unblinded designs. It is also unclear in the paradigms where both left and right hemisphere 

were stimulated whether the effect was driven by one or the other hemisphere or whether the 

effect was a result of the combination of both. Finally, the behavioral improvements appear 

to be limited to repetitive behaviors, irritability, and specific measures of attention.

The Pascual-Leone lab has also published reports showing improved performance on a 

behavioral task in patients with ASD following a TMS protocol. Fecteau and colleagues 

(Fecteau, Agosta, Oberman, & Pascual-Leone, 2011) conducted a study where they applied 

a single session of low-frequency (1 Hz) rTMS to left and right pars triangularis and pars 

opercularis (the two regions that comprise Broca’s area) in 10 individuals with ASD and 10 

matched neurotypical control participants in a double-blind, pseudorandomized, sham-

controlled study. Compared to the sham condition all 10 individuals with ASD showed 

reduced latency to name objects on the Boston Naming Test following stimulation to the left 

pars triangularis (BA 45) while 9/10 showed an increased latency following stimulation to 

the adjacent left pars opercularis (BA44). The authors suggest that in individuals with ASD 
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left BA45 exerts an abnormally excessive amount of inhibition on left BA44, thus inhibiting 

left BA45 resulted in a suppression of the excessive inhibitory control and thus a behavioral 

improvement. Though this interpretation has not been empirically tested. Findings from this 

study though short-lived, given the single session design, suggest that rTMS to BA45 may 

lead to improvements in language processing in ASD and warrant further studies aimed at 

long-term improvements in this domain (Fecteau, et al., 2011). This study also demonstrated 

the importance of strict anatomical targeting as the opposite result was found when the 

target region was in the adjacent BA44 region.

Another group based in Melbourne Australia is also exploring the potential of rTMS to 

improve specific symptoms of ASD. In a recent paper they describe a study in which a 

single session of 1 Hz rTMS was applied to one of two motor cortical regions (Left M1 and 

Supplementary Motor Area (SMA)) in 11 individuals with ASD. Though not often 

considered a core impairment in ASD, motor dysfunction is often noted as an associated 

feature. Following stimulation of M1, there was a significant improvement in a late 

movement-related cortical potential (MRCP) thought to be associated with the execution of 

movement while stimulation of SMA resulted in an improvement of the early MRCP 

suggesting enhanced motor preparation. Though post-stimulation improvements were seen, 

their MRCPs still remained outside of what would be considered neurotypical levels, though 

this study did not include a control group. Despite improvements in the electrophysiological 

response, there was not a significant improvement in behavioral measures of motor 

functioning (Enticott, et al., 2012b).

This same group is currently conducting a sham-controlled, double blind clinical trial of a 

specific type of high frequency rTMS (deep rTMS) to the medial prefrontal cortex (mPFC) a 

region thought to play a key role in theory of mind abilities (understanding the mental state 

of others) (Amodio & Frith, 2006; Frith & Frith, 1999; Mitchell, Cloutier, Banaji, & 

Macrae, 2006; Saxe & Powell, 2006). Thus, the goal of this study is to develop a therapeutic 

intervention aimed at improving the individual’s capacity for understanding other’s mental 

states. Though this study is still ongoing, the group has reported that several participants 

have responded to the treatment resulting in a reduction of self-reported clinical symptoms 

(Enticott, personal communication). An individual who had a very pronounced response 

(Ms. D) was featured in a case report (Enticott, Kennedy, Zangen, & Fitzgerald, 2011). This 

patient showed improvements on the Interpersonal Reactivity Index (IRI), the Autism 

Spectrum Quotient (AQ) and the Ritvo Autism-Asperger Diagnostic Scale. She also 

reported that she found eye contact “less uncomfortable” and found social situations “more 

natural” even joining a social club and making new friends. She noted that she “did not have 

to think so much of what to say” and was more aware of instances when she might be 

making someone uncomfortable. She also reported an increased capacity for empathy and 

perspective taking, even for incidents that occurred many years before. She also experienced 

greater consideration for and affection toward family members following the stimulation 

protocol. These changes were also noted by her family. Her mother described her as more 

considerate of others following the stimulation. These improvements seemed to remain at 

the one month and six month follow-up (Enticott, et al., 2011). Still other groups including 

one in Israel (NCT 01388179) and one in France (NCT 01648868) also have ongoing 
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clinical trials applying rTMS for the treatment of specific ASD symptoms, the results of 

which have yet to be published.

Conclusion

In conclusion, though results of published studies are promising suggesting that specific 

rTMS protocols targeting specific regions of cortex may lead to improvement in specific 

behavioral deficits in some individuals with ASD, both the investigative and therapeutic 

results have been mixed. Additionally, the large-scale, controlled trials necessary to 

establish the safety and efficacy these brain stimulation protocols have yet to be conducted. 

As discussed earlier, rTMS and other electrical stimulation devices have the capacity to 

modulate the functioning of the brain in either a facilitatory or suppressive manner and when 

applied over several sessions can have an additive effect that can last several months. 

Caution is warranted when applying such potentially powerful modulatory effects on the 

brain, especially the brain of a developing child as results have ranged from improvement to 

significant exacerbation of symptoms. As technology advances and we are able to have a 

direct effect on brain functioning, we must critically evaluate the potential for benefit, while 

being respectful of the incredibly complex workings of the brain and how pathophysiology 

interacts with development to lead to specific behavioral symptoms. Also note that most of 

the studies conducted so far have been conducted on older children and adults.

If theories are correct that cortical mechanisms of excitability, connectivity, and plasticity 

are abnormal in ASD, then rTMS has the capacity to modulate these mechanisms. However, 

it is unclear what proportion of individuals experience observable behavioral improvements 

following modulation of these physiologically aberrant indices. One also needs to consider 

the heterogeneity of the population. Though these mechanisms might be altered in many 

individuals with ASD, depending on the underlying pathophysiology and genetic 

background, the direction and degree of this alteration may differ in any given individual. It 

is also unclear in any given individual what regions of the cortex are most affected and 

which protocols would be most effective to target. It appears that some rTMS protocols have 

had a profound impact on their behavioral impairments, while many have reported no 

significant change. What is clear from the literature is the phenotypic heterogeneity of this 

population. Thus, it should come as no surprise that there is heterogeneity in the efficacy of 

rTMS. Perhaps a “one size fits all” approach may not be ideal for this application, but rather 

an individualized approach based on baseline measures of cortical plasticity and excitability 

of a given individual and used in combination with other behavioral or pharmacological 

interventions.

Approximately 100 patients with ASD have now undergone rTMS protocols with 

therapeutic intent (across 8 studies using all different parameters and locations of 

stimulation). It is unclear what proportion of them have experienced an improvement of 

symptoms and what proportion has seen no improvement or worsening of symptoms 

following rTMS. It is also unclear what protocol is best used to target the specific symptoms 

of ASD. rTMS protocols vary in stimulation location, frequency, as well as number and 

timing of sessions. These parameters can be the difference between facilitating or 

suppressing cortical functioning or having no effect at all. In the hands of trained 
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technicians, rTMS has great potential as both a diagnostic and therapeutic tool for ASD. 

However, the average sample size in the studies thus far is only 15 and five of the eight 

studies published thus far are open label. We must restrain our enthusiasm for new 

techniques until they have been properly vetted through controlled clinical trials and been 

shown to be both safe and efficacious. Thus, larger, randomized, sham-controlled studies are 

necessary to establish their true potential.
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