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Extremely low-frequency electromagnetic fields: A possible non-invasive
therapeutic tool for spinal cord injury rehabilitation
Suneel Kumara,b, Soumil Deya, and Suman Jaina

aDepartment of Physiology, All India Institute of Medical Sciences, New Delhi, India; bW. M. Keck Center for Collaborative Neuroscience,
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ABSTRACT
Traumatic insults to the spinal cord induce both immediate mechanical damage and subsequent
tissue degeneration. The latter involves a range of events namely cellular disturbance, homeo-
static imbalance, ionic and neurotransmitters derangement that ultimately result in loss of
sensorimotor functions. The targets for improving function after spinal cord injury (SCI) are mainly
directed toward limiting these secondary injury events. Extremely low-frequency electromagnetic
field (ELF-EMF) is a possible non-invasive therapeutic intervention for SCI rehabilitation which has
the potential to constrain the secondary injury-induced events. In the present review, we discuss
the effects of ELF-EMF on experimental and clinical SCI as well as on biological system.
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Introduction

Sir Ludwig Guttmann (Sperryn, 1976), the great pio-
neer in the field of spinal cord injury (SCI) rehabilita-
tion, reported that SCI, for certain, is one of the
greatest disasters to human beings. It is one of the
most debilitating pathologies, leading to huge rehabili-
tation challenges (Campagnolo et al., 2000; Wu and
Ren, 2009). It is not only incapacitating to the affected
individual but also impinge on quality of life of the
affected family (Lin et al., 2004). SCI leads to serious
disability in movement but may also cause dysfunctions
of many organs, including the respiratory, gastrointest-
inal, urinary and autonomic nervous system, as well as
skin, bone and joints, depending upon the level and
severity of injury. The involvement of multiple organ
system could be one of the causes for high mortality
rate during both acute and chronic stages of SCI (Chiu
et al., 2010). Worldwide, an estimated 2.5 million peo-
ple live with SCI, with more than 13 × 104 new injuries
reported annually (Thuret et al., 2006).

Pathophysiology of SCI

SCI leads to an immediate hind limb paralysis, lack of
reflexes and loss of sensation below the level of injury
and bowel and bladder dysfunction with significant
residual complications of marked chronic pain and
osteoporosis (Basso et al., 1996; Christensen and
Hulsebosch, 1997). Pathophysiology of SCI is

contributed by both primary (acute) and secondary
mechanisms (chronic) of injury.

Primary injury
Initial mechanical trauma includes direct compression of
spinal cord tissue by fractured and displaced bone frag-
ments, disc material and ligaments injuring both the
central nervous system and peripheral nervous system.
Blood vessels are damaged, axons disrupted and neural
cell (neuronal) membranes broken. Microhemorrhages
occur within minutes in the central gray matter and
spread out radially and axially over the next few hours.
Within minutes, the spinal cord swells to occupy the
entire diameter of the spinal canal at the injury level
(McDonald and Sadowsky, 2002).

Secondary injury
The secondary injury begins minutes after the primary
injury and is a progressive degeneration that can last
from several months to years (Park et al., 2004). It
comprises a battery of vascular, biochemical and cellu-
lar disturbances that result in the formation of glial scar
at the injury site. This scar is not only a mechanical, but
also a chemical barrier, secreting a number of mole-
cules that inhibit axonal growth, including chondroitin
sulfate proteoglycans (Yiu and He, 2006). However, it
also provides several beneficial functions after SCI, such
as limiting damage by re-establishing the blood–brain
barrier and by preventing an overshooting
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inflammatory response (Faulkner et al., 2004; Okada
et al., 2006; Sofroniew, 2005). The summary of events
occurring during secondary injury is enumerated in
Figure 1 (Adapted and modified, Hausmann, 2003).

Although SCI initiates a secondary phase of progres-
sive degeneration, it also initiates a number of neuro-
protective and regenerative responses in the central
nervous system (Hagg and Oudega, 2006).
Regenerating axons can be observed within the first
24 h after injury (Kerschensteiner et al., 2005), a pro-
cess called abortive sprouting (Schwab and Bartholdi,
1996). However, this regenerative process leads to
minimal functional improvement. Functional plasticity
and local circuit formation/adaptation in the spinal
cord may contribute to the spontaneous behavioral
improvement seen in rodents as well as in humans
after incomplete SCI (Bareyre et al., 2004; Edgerton
et al., 2004; Frigon and Rossignol, 2006).

Treatment strategies for SCI

Over the last few years, research work has been done
using in vitro and in vivo approaches on improving SCI
repair, functional restoration and recovery, accounting
to a partial success, but only a limited success is
achieved so far (Joo et al., 2012). The therapies pro-
posed generally fall under one of two classifications: (i)
those that block cues that inhibit regeneration and (ii)
those that provide or enhance growth-promoting cues.
Many combinatorial and singular therapies employ
both approaches and thereby target at halting the
spread of secondary tissue damage, curbing inflamma-
tion, reducing glial scar formation, neutralizing inhibi-
tory factors, stimulating nerve fibers to regrow,
nourishing surviving nerve cells, promoting physical

fiber growth across the injury area, directionally guid-
ing physical growth and enabling connection establish-
ment (Bunge, 2008).

Epidural stimulation and locomotor training are
among the most recent recommended combinatorial
therapies proposed for recovery from SCI in experi-
mental animals (Gad et al., 2014; Gerasimenko et al.,
2008) and patients (Angeli et al., 2014; Dietz and
Fouad, 2014; Harkema et al., 2011). However, the chal-
lenge of this technique is its invasiveness of surgically
implanted electrodes epidurally or even penetration
into the “healthy” parts of the spinal cord (Dietz and
Fouad, 2014). Thus, non-invasive spinal electromag-
netic stimulation which is better than epidural in sev-
eral ways and tested on SCI patients has been
recommended by the same group of scientists (Gad
et al., 2015; Gerasimenko et al., 2010). Further, there
are reports which highlight the potential of electromag-
netic fields (EMFs) (Gerasimenko et al., 2010).

Electromagnetic fields (EMF)

An EMF, a property of space, is caused by the motion
of an electric charge. A changing magnetic field (MF)
produces an electric field (EF), as the English physicist
Michael Faraday discovered in work that forms the
basis of electric power generation. Conversely, a chan-
ging EF produces a MF, as the Scottish physicist James
Clerk Maxwell deduced. The EF and MF travel together
through space as waves of electromagnetic radiation,
with the changing fields mutually sustaining each other.
The mutual interaction of EF and MF produces EMF
which is considered as having its own existence in space
apart from the charges or currents (a stream of moving
charges) with which it may be related. Under certain

Figure 1. Summary of events following spinal cord injury.
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circumstances, this EMF can be described as a wave
transporting electromagnetic energy. Examples of elec-
tromagnetic waves travelling through space indepen-
dent of matter are radio and television waves,
microwaves, infrared rays, visible light, ultraviolet
light, X-rays and gamma rays. Particularly nowadays,
due to close integration of wireless communications
into our daily lives, EMFs are all around us.

There are two main forms of EMFs: radiofrequency
(RF)-EMF and extremely low frequency (ELF)-EMF.
The frequencies of RF-EMF (100 kHz to 300 GHz) are
considerably higher than ELF-EMF (0–100 Hz). The
main uses of RF-EMF are in broadcasting information,
whereas, it is the ELF-EMF which is of biological sig-
nificance. The Earth’s natural geomagnetic field strength
varies from ~60 μT at the magnetic poles to ~30 μT at
the equator (Spencer et al., 2010). In the present review,
studies are included which have used 0–100 Hz fre-
quency with micro-tesla to tesla EMF intensity.

Effect of ELF-EMF on Biological System
Life on earth evolved in a sea of natural EMF. However,
over the past century, this natural environment has
changed with a huge and fast growing spectrum of
man-made EMF. In eukaryotes, narrow fluid channels
surrounding each cell play an important role in cell–cell
signaling. These channels (150A° wide) act as windows
on the electrochemical world surrounding each cell.
They also act as routes for hormones, antibodies, neu-
rotransmitters and chemicals to reach their binding
sites on cell membrane (Adey, 1992). Since they offer
much lower electrical impedance than cell membranes,
they are also preferred pathways for intrinsic and envir-
onmental EMF. Although this intercellular space forms
only about 10% of the conducting cross-section of
typical tissue, it carries at least 90% of any imposed or
intrinsic current and directs it along the cell membrane
surface. The ELF and RF-EMF, if amplitude modulated
in the range of 0–100 Hz, produces tissue gradients in
the range 10-’-10–1V/cm. This has been shown to
mediate certain essential physiological functions in
marine vertebrates, birds and mammals (Adey, 1981).

The ELF-EMF, which is produced by alternating
current between 30 and 300 Hz, is mainly generated
by power distribution networks, industrial machinery
and electric appliances (WHO, 2007). General public is
thereby exposed continuously to ELF-EMF on a daily
basis in industrialized nations. Therefore, the biological
effects of ELF-EMF have been a subject of exploration
for a long period of time. A great deal of research has
been focused on the possible relationship between ELF-
EMF and their effects on variety of biological processes
(Nordenson et al., 1994; Santini et al., 2009; Santoro

et al., 1997; Tonini et al., 2001). Biological systems
respond to a wide range of EMF. Most of the effects
reported so far indicate that the majority of ELF-EMF
is tolerated by the living organisms without detectable
detrimental effects (Kroupova et al., 2007). The
ELF EMF can influence enzyme action, signal transduc-
tion, protein synthesis and gene expression, which have
important role in cell growth (Kula et al., 1991).

Effect on gene expression and oxidative stress: Proteins are
key players in organisms, and it has been assumed that any
biological impact of ELF-EMF may be mediated by altera-
tions in protein expression (Phillips et al., 1992); for exam-
ple, heat-shock proteins have been identified as EMF-
responsive genes and/or proteins in certain biological sys-
tems (Goodman et al., 2009). Cells respond to ELF-EMFvia
changes in transcription and translation of heat-shock pro-
tein (Carmody et al., 2000;Goodman andHenderson, 1988;
Goodman et al., 1994; Lin et al., 1998, 1999).

The hsp70 protein is cyto-protective and has been
shown to act as a “chaperone” to refold and restore
the function of cellular proteins after damage by
injury or inflammation (Morimoto, 1998).
Goodman et al. (2009) showed that ELF-EMF (60
Hz, 80 mG, 1h × 2/day for 15 days) significantly
facilitates the regeneration of tail and head within 3
days of exposure after complete transection of
Planaria Dugesia dorotocethala from the middle.
These ELF-EMF-exposed heads and tails also exhib-
ited an elevation in the level of hsp70 protein, an
activation of an extracellular signal-regulated kinase
(ERK) cascade and an increase in serum response
factor-element (SRF-SRE) binding that are generally
associated with repair processes. Li et al. (2005) in
human breast cancer cell line MCF-7 performed a
proteomics approach to investigate the changes of
protein expression profile induced by ELF-EMF
exposure (0.4 mT, 50 Hz × 24 h). Three proteins
that decreased their expression were RNA-binding
protein regulatory sub-units, proteasome sub-unit β-
7 precursors and translational controlled tumor pro-
tein. Sulpizio et al. (2011) investigated protein
expression post ELF-EMF (50 Hz, 1 mT) at different
times in human SH-SY5Y neuroblastoma cells.
There were nine new proteins resolved in the sam-
ple after 15 days of treatment, and these were either
involved in a cellular defense mechanism and/or in
cellular organization and proliferation. The authors
also showed that the exposure altered the cell pro-
liferation and cell viability.

In addition, the exposed cells showed a higher and
more widespread expression level of α-tubulin, espe-
cially in the periphery of cell clusters, compared to
control cells, suggesting that the exposure induces a
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spatial orientation of cells. The authors hypothesized
that EMF exposure triggers a shift toward more
invasive phenotype (Chen and Xu, 2013). Recently,
Patruno et al. (2015) showed that short exposure (1 h
or 24 h) of ELF-EMF (50 Hz, 1 mT) to HaCaT cells
(keratinocyte cell line) modulates distinct patterns of
gene expression which are involved in cell prolifera-
tion and in the cell cycle. They found that an
increase of the canonical pathway of mTOR regula-
tion (PI3K/Akt) and activation of ERK signaling
pathways related to pivotal biological processes and
function in wound healing. This raises a possibility
that ELF-EMF may serve as a potential tool for
manipulating neuronal death and/or survival (Oda
and Koike, 2004). With regard to their effects on
signal transduction in non-neuronal cells, both posi-
tive and negative results have been reported (Uckun
et al., 1995; Woods et al., 2000).

Metabolic processes which generate oxidants and
antioxidants can also be influenced by ELF-EMF.
Increased EMF exposure can modify the cellular bal-
ance by generating reactive oxygen species. Physical
processes at atomic level is the basis of reactions
between bio-molecules and EMF, as the field can mag-
netically affect chemical bonds between adjacent atoms
and alter the energy levels and spin orientation of
electrons. It thereby modulates the redox status of
cell, leading to reactive oxygen species generation
which induces DNA damage, thus acting as a cancer
initiator in different cell types (Lai and Singh, 2004;
Wolf et al., 2005). Absence of genotoxicity in cells
exposed to ELF-EMF has also been shown, suggesting
that excessive oxidative stress may not be induced due
to ELF-EMF exposure (Amara et al., 2007). The
WHORA-2007 has classified the in vitro studies regard-
ing the evaluation of reactive oxygen species into a
high-priority line of inquiry in the research field of
biological effect of EMF. In vitro study of human breast
epithelial MCF10A cell have shown that ELF-EMF
exposure did not increase intracellular reactive oxygen
species, superoxide dismutase activity and GSH/GSSG
ratio (Hong et al., 2012). Similarly, low-level EMF
exposure (45 µT) suppressed hydrogen peroxide pro-
duction in fibrosarcoma cells, whereas superoxide dis-
mutase level increased (Martino and Castello, 2011).
There are three different types of literature available
namely positive, negative and no effects on oxidative
stress/free radical formation by ELF-EMF exposure
depending upon the exposure time, model, magnetic
force, parameters studied and type of exposure (acute/
chronic/intermittent).

Bioinitiative report, 2014 (www.bioinitiative.org),
mentioned that the relation of oxidative stress with

ELF-EMF and their role on neurological/behavioral
effects has not been carefully considered taking into
the account of other physiological factors (e.g. sex,
age, stress, etc.) that can influence the response of
ELF-EMF. Falone et al. (2008) studied the effect of
age on ELF-EMF (50 Hz, 0.1 mT for 10 days)-mediated
oxidative stress. They observed an increase in antiox-
idative enzymes and defense against oxidative damage
in brains of young rats, whereas that of old rat showed
a decrease. Janac et al. (2012) reported age-dependent
effects of ELF-EMF on locomotor activity in the
Gerbils. Sun et al. (2010) reported that, after in ovo
exposure to ELF-EMF, chicks showed memory deficit
only when they were under stress. A short-term EMF
exposure increases the lipid peroxidation in brain while
long-term exposure decreases it (Ciejka et al., 2011).
Exposure to 2.45 GHz microwave increases the apop-
totic activity and DNA damage of cell, whereas the
EMF exposure of 100 Hz relieves this effect (Kumar
et al., 2011).

Brain-derived neurotrophic factor (BDNF) plays an
important role in the adaptive responses to oxidative
stress and can prevent reactive oxygen species-mediated
neuronal cell death (Mattson et al., 2002). Magnetic
stimulation also activates the BDNF-TrkB signaling
pathway including the MAPK/ERK and PI3K/Akt path-
ways, to upregulate expression of the downstream effec-
tor molecules and synaptic protein markers SYN,
GAP43 and PSD95 (Ma et al., 2013), thereby promoting
the BDNF role in survival, development, differentiation
and regeneration of neurons (Ciejka et al., 2011). An
exposure of neurons to 1 mT ELF-EMF causes a signifi-
cant increase in the mRNA and protein expression of
both BDNF ligand and its receptor TrkB (Ciejka et al.,
2011). Tasset et al. (2013) showed that ELF-EMF acti-
vates the antioxidant pathways in vivo. ELF-EMF (50 Hz,
0.7 mT) can modulate the Nrf2 transcriptor factor in a
Huntington’s disease via an increase in cytoplasm and
nucleus Nrf2 levels. It was therefore concluded that it
modulates Nrf2 expression and translocation and that
may explain the neuroprotective effect as well as its
antioxidant and cell protection capacity.

Effect on survival of neurons and neurotransmit-
ters/neuropeptides: There is evidence that the neuro-
protective effect of exposure to ELF-EMF may be due
to their effect on levels of neurotrophic factors and
cell survival. EMF exposure exerts a strong effect on
reducing apoptosis in several cell systems (Fanelli
et al., 1999) and help in healing process (Milgram
et al., 2004). Oda and Koike (2004) showed that ELF-
EMF exposure suppresses neuronal apoptosis and
promotes survival of mammalian neurons in the cen-
tral nervous system. The survival-promoting effect of
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ELF-EMF is greater than that of neurotrophic factor,
BDNF, and comparable to membrane depolarization
with elevated K+ (Oda and Koike, 2004). Since ELF-
EMF is mediated through induced currents, higher
induced currents are more efficient in suppressing
the cell death and promoting survival. These effects
are mediated by an increase in Ca2+ influx, since its
inhibition attenuates EMF anti-apoptotic effect. ELF-
EMF enhances neuronal differentiation of cortical
neural stem cells in vitro through upregulation of
Ca v1-channel expression and activity (Kim et al.,
2013; Piacentini et al., 2008). The entry of Ca2+

through these channels influences the transcription
of certain classes of genes that are involved in cell
survival and differentiation (e.g. ELF-EMF promotes
neural differentiation of bone marrow stromal cells
possibly via upregulation of Prdx3 and ferritin
expression within these cells) (Kim et al., 2013). In
vitro study by Wang et al. (2010) showed that EMF
(0.23–0.28T) can reproduce the effect of promising
class of non-dopaminergic PD drug (ZM241385) in a
non-invasive manner. This work on rat PC12 cell line
via altering the Ca2+ flux increased ATP level and
decreased cAMP, nitric oxide, p44/42 MAPK phos-
phorylation and iron intake. Raus et al. (2012, 2013)
also reported that ELF-EMF (50 Hz, 05 mT – 7 days)
is neuroprotective in vivo. In Gerbils, global cerebral
ischemia-induced motor hyperactivity was reduced
significantly when these animals were exposed to
ELF-EMF continuously. It was further supported by
histological evidences where ELF-EMF prevented the
cell loss in CA1 region of hippocampus and activated
the astrocytes and microglia cells after ischemia
(Raus et al., 2013). Thus, ELF-EMF shows neuropro-
tective efficiency both in vitro and in vivo.

Neurotransmitters/neuropeptides are endogenous
chemicals that enable neurotransmission and play a
major role in shaping everyday life and functions.
Imbalances in these chemicals have been related to
pathogenesis of many diseases namely Parkinson’s,
depression, insomnia, attention-deficit hyperactivity
disorder, anxiety, memory loss, dramatic changes in
weight and addictions. Medications that directly react
with serotonin and nor-epinephrine are prescribed to
patients with diseases such as depression and anxiety
disorders (Leo and Lacasse, 2008). There are several
studies which show the beneficial role of ELF-EMF on
neurotransmitters/neuropeptides with varying etiology,
which are discussed in a different section of this review
(Arias-Carrion, 2008; Bao et al., 2006; Ben-Shachar
et al., 1997; Kanno et al., 2004; Keck et al., 2000;
Kumar et al., 2013; Lai et al., 1993; Poirrier et al.,
2004; Shin et al., 2007; Sieron et al., 2004). ELF-EMF

exposure (10 Hz, 1.8–3.8 mT 1 h/day × 14) does not
influence the level of the examined biogenic amines
(dopamine, 5-HT) and metabolites but increased their
turnover in corpus striatum and frontal cortex of adult
male Wistar rats by changing receptor reactivity (Janac
et al., 2009) of monoaminergic systems and related
behaviors or their agonists and antagonists (Sieron
et al., 2004). Bao et al. (2006) showed that an increase
in endogenous beta-endorphin, substance P and 5-HT
by ELF-EMF exposure (55.6 Hz, 8.1 mT) is associated
with analgesic effects in rats. However, Masuda et al.
(2011) observed that exposure to ELF-EMF (50 Hz, 1
mT) does not affect the physiological functions
mediated by 5-HT1B receptor subtype. Acute treatment
with repetitive transcranial magnetic stimulation (TMS)
in rodents modulates monoamine content and turn-
over, but there is no effect on its levels or metabolites
after chronic stimulation (Arias-Carrion, 2008). Acute
repetitive TMS reduces dopamine in the frontal cortex
and increases in the dorsal striatum (Ben-Shachar et al.,
1997), ventral tegmental area, nucleus accumbens and
hippocampus (Arias-Carrion, 2008). Reductions in
arginine vasopressin release and increase in taurine,
aspartate and serine are reported in the hypothalamic
paraventricular nucleus after EMF exposure (Keck
et al., 2000). There are reports which show the role of
ELF-EMF on glutamate transmission via N-methyl-D-
aspartate (NMDA) receptors as well as its metabolism
(Frilot et al., 2014; Kim et al., 2014; Li et al., 2014;
Wieraszko et al., 2005).

Effect of ELF-EMF on pain: There have been growing
evidence that ELF-EMF has analgesic effects in animals
(Martin and Persinger, 2004; Shupak et al., 2004a), and
it alleviates pain caused by psoriasis, tendonitis and
rheumatoid arthritis (Johnson et al., 2004; Nindl et al.,
2000; Thomas et al., 2001). Shupak et al. (2004a)
observed increased latencies to the hot plate test
(analgesia) in mice exposed to ELF-EMF (100 µT × 30
min). They also reported a decrease in pain following a
brief EMF exposure (30 min) in humans (Shupak et al.,
2004b). Martin and Persinger (2004) exposed rats for 30
min to a burst-firing ELF-EMF and showed an increase
in pain threshold for a period of 4 h after a single
exposure. Bao et al. (2006) also observed an analgesia
following exposure to ELF-EMF (8.1 mT, 55.6 Hz, 6h/
day × 4). They also observed analgesia at day 5, along
with elevated levels of 5-HT, β-endorphin and sub-
stance P in the brain. However, after a repeated expo-
sure for 14 days, no further increase was evident in
behavior as well as in levels of neurochemicals.
Various mechanisms for pain modification by EMF
have been postulated in the literature, of which
opioid-mediated analgesic effect is most acceptable
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(Bao et al., 2006). The administration of naloxone abol-
ished or attenuated the analgesic effects of ELF-EMF,
confirming the opioid-mediated effects of EMF. Thus,
opioid-mediated factors are keys to magnetic anti-noci-
ception research (Kavaliers and Ossenkopp, 1993; Papi
et al., 1992). Exposure to ELF-EMF (50 Hz, 17.96 µT,
2h/d × 15, 30 days) decreases tonic pain in intact rats
and mice (Mathur et al., 2006; Shupak et al., 2004a),
which is opioid mediated since naloxone (opioid
antagonist) pretreatment reversed the effect.

Opioid receptor activation may lead to inhibition of
neurotransmitter release and/or slow cell firing rate,
thereby inducing analgesic effect. Upon activation of δ
and µ receptor activation, G-protein subunits interact
with multiple cellular effector systems, inhibit adenyl
cyclase and voltage-gated Ca2+ channels and stimulate
G protein-activated inward rectifying K+ channels and
phospholipase C, thereby inhibiting neuronal activity
(Del Seppia et al., 2007). Consistent inhibitory effects of
acute exposures to various EMFs on analgesia have also
been suggested (Del Sepia et al., 2007). In response to
ELF-EMF (10 Hz, 1.8–3.8 mT/day × 14), increased
turnover rates of dopamine and 5-HT were also
observed (Sieron et al., 2004). This indicates that the
effect of EMF on pain is also mediated by several
neurochemicals at the supraspinal level. Dopamine
and 5-HT plays an important role in the activity of
the descending pain pathway. Increased levels of sero-
tonin through the raphe nucleus activate the GABA-
ergic neurons of the PAG causing increased inhibition
of the dorsal horn neurons which respond to painful
stimuli. Thus, ELF-EMF may alleviate pain behavior by
supraspinal inhibition of pain responses. In contrary,
TMS treatment (60 Hz, 2 and 6 mT, 2 h twice/day × 5)
in rats leads to a significant reduction in the nociceptive
threshold as compared to sham-treated rats. A slow
recovery to normal mechanic threshold was observed
after removal of TMS (Ambriz-Tututi et al., 2012).

Effect of EMF on regeneration: EMF stimulation cre-
ates intense, rapid EFs that can penetrate soft tissue and
bone to reach the nervous system structures. The mag-
netic pulses produce EF and if the induced current is of
sufficient amplitude and duration such that depolariza-
tion occurs, neural tissue is stimulated. Thus, MF sti-
mulation improves the microenvironment of the nerve
regeneration by stimulating neurotrophic factor release,
increasing c-fos gene expression and glial cell migration
at the lesion site and decreasing cell apoptosis after
neural injury (Grissom, 1995). Wilson and Jagadeesh
(1976) first demonstrated that EMF exposure can
enhance nerve regeneration in rats. Since then, in last
few decades, weak EMFs have been predominantly used
to enhance growth and regeneration of the nervous

tissue following nerve injuries in experimental condi-
tions. Broad-frequency spectrum of EMF seems to be
more essential for the nerve regeneration promotion
than their intensity (Bassett, 1993).

In vitro, EMF exposure enhanced neurite outgrowth
from cultured spinal cord and peripheral ganglia and in
vivo, it stimulated regeneration of the sciatic nerve as
measured by recovery of function, nerve fiber diameter
and number of regenerating fibers in rats (Ito and
Bassett, 1983; Raji and Bowden, 1983; Sisken et al.,
1990). Bervar (2005) has shown that combining expo-
sure of pulse EMF and sinusoidal EMF promotes earlier
onset of functional recovery and more efficient attain-
ment of the functional recovery plateau due to their
effect on peripheral nerve regeneration and systemic
effect on neuronal cell bodies. ELF-EMF exposure also
facilitates adult hippocampal neurogenesis in vivo as
revealed by neural differentiation markers
(Cuccurazzu et al., 2010) and synaptic plasticity in
hippocampal neurons in cultures through BDNF-TrkB
signaling pathways (Ma et al., 2013).

The exact mechanism of EMF action to promote
regeneration is still not known, though several possible
candidates have been discovered. Among them, calcium
ion, G protein signaling and protein kinase C are most
obvious. Besides these observations, EMF stimulation
increases neurotrophic factor secretion, their receptor
upregulation and modulation of several neurotransmit-
ter levels which collectively suppress the apoptosis and
promote cell survival as described previously. Together,
all these processes support neuro-regeneration.

ELF-EMF as therapeutic alternative for SCI

SCI is a multifactorial syndrome though its onset is
mediated by mechanical trauma. Major factors that
can contribute to its etiology are inflammation, oxida-
tive stress/free radical formation, glutamate and seroto-
nin excitotoxicity, mitochondrial dysfunction, gliosis
and cell death, leading to the formation of scar.
Thereby, there is a need for a therapy that has multiple
targets. It is evident from the above discussed review of
literature that ELF-EMF has this potential. Thus, it
seems to be most suitable possible alternative treatment
for SCI rehabilitation.

A number of studies have been conducted on various
SCI models. Pulsed EMF has been shown to improve
locomotion, restore muscle contraction properties, limit
muscle degeneration and spare white matter, leading to
smaller lesion volume following SCI (Ahmed and
Wieraszko, 2008; Ahmed et al., 2011; Cho et al., 2013;
Crowe et al., 2003). Functional magnetic stimulation
improves the quality of life of the SCI patients and animal
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model by better autonomic control of bladder and bowel;
respiratory and coughing capabilities; colon emptying
and gastrointestinal liquid transit time (Ahmed et al.,
2011; Crowe et al., 2003; Shen and Zhao, 2010). ELF-
EMF also leads to an alteration in the expression of
genes, leading to osteoblast proliferation and regeneration
in SCI (Manjhi et al., 2013) and non-SCI osteoporosis
model of aves and rodent (Chang and Hong-Shong
Chang, 2003; Diniz et al., 2002a, 2002b; Shen and Zhao,
2010). There was also attenuation of SCI-induced tonic
pain and general body conditions following chronic expo-
sure of ELF-EMF (Das et al., 2012; Kumar et al., 2010,
2013; Manjhi et al., 2013). Among several neurotransmit-
ters/chemicals involved in locomotion, 5-HT has a pivotal
role since its application to the lower thoracic–upper
lumbar spinal cord produces alternating rhythmic activity
in the hind limbs (Grillner, 2003). In complete SCI rats,
ELF-EMF exposure restored supraspinal (Kumar et al.,
2013) and spinal (Poirrier et al., 2004) 5-HT concentra-
tion which contributed toward improvement in locomo-
tion as shown by BBB score. Further, the level of 5-HT
was restored secondary to resumption of its normal meta-
bolism and regeneration of critical number of descending
fiber’s which has a significant role in improvement of
locomotion (Kumar et al., 2013; Poirrier et al., 2004).

There is a decrease in tonic pain responses after SCI
which is restored to eualgesic state by ELF-EMF exposure
(Kumar et al., 2013). This is generally associated with an
alteration in pain-related neurotransmitters (5-HT,
GABA, NE, dopamine, glutamate and glycine) in the
cortex, fore brain structures and in brain stem. There
was a decrease in 5-HT concentration throughout the
brain; an increase in the concentration of GABA and
noradrenalin in brain stem and no significant change in
the concentrations of dopamine, glutamate and glycine
after 8 weeks of SCI. ELF-EMF exposure increased 5-HT
concentration in all parts of the brain, which, in turn,
assisted in restoration of the nociceptive responses.
Correlation between the recovery and magnetically
induced increase in the release of major excitatory neuro-
transmitter (glutamate) from injured tissue is also
reported in in vitro experiment (Leydeker et al., 2013).

Mechanism of action of ELF-EMF in SCI

ELF-EMF have been shown to ameliorate SCI-
induced locomotor deficits, osteoporosis, tonic pain
and general body conditions (Ahmed and Wieraszko,
2008, 2011; Crowe et al., 2003; Das et al., 2012;
Hunanyan et al., 2012; Kumar et al., 2010, 2013;
Leydeker et al., 2013; Manjhi et al., 2013; Pal et al.,
2013). This recovery may be either due to reduction
in secondary damage or promotion of neuro-

regeneration and neurochemicals. EMF exposure
leads to a reduction in the secondary damage-
induced inhibitory environment and thereby a reduc-
tion in the lesion volume. This creates milieu that is
conducive for the growth of new synaptic connec-
tions. ELF-EMF exposure per se also directly facil-
itates nerve regeneration, neurochemical/
neurotransmitter levels, angiogenesis, osteogenesis
and increase in neurotrophic factors at the lesion
site after SCI and non-SCI studies (Delle Monache
et al., 2008; Kumar et al., 2013; Manjhi et al., 2013;
Mert et al., 2006; McKay et al., 2007; Leydeker et al.,
2013).

Das et al. (2012) have shown that exposure to ELF-
EMF reduces the hemi-section SCI-induced hyperalge-
sia exhibited in response to both thermal and direct
nociceptive afferent stimulation of the tail. The under-
lying mechanism for restoration of eualgesic state
appears to be twofold: 1, MF bio-interaction per se on
pain processes and/or 2, its facilitation of neurogenesis.
The former gains support from the widely observed
analgesic responses after exposure to EMF in several
species to a variety of noxious stimuli involving multi-
ple pathways (Del Seppia et al., 1995; Kavaliers and
Ossenkopp, 1993; Mathur et al., 2006), while the latter
is possibly indicated by the restoration of threshold of
simple vocalization and locomotion. The threshold of
simple vocalization is a brain stem-mediated reflex
involving supra-lesion structures, whereas locomotion
involves the intrinsic network involving central pattern
generators for control of timing and pattern of muscle
activity, which are present in lumbar spinal segments
(Kiehn, 2006).

Damaged corticospinal tract axons destined for the
lumbo-sacral spinal cord sprout on to propriospinal tract
neurons above the lesion (Bareyre et al., 2004) and
expand their arborization among lumbar motor neurons.
Thus, the propriospinal axons spontaneously form a new
functional intraspinal circuit that relays input from the
brain to its original spinal target. EMF has been reported
to reduce corticospinal inhibition so that there is facil-
itation of the recovery process and modified plasticity of
the sensory cortex (Belci et al., 2004; Thomas and
Gorassini, 2005). EMF also promotes recovery by
amending the non-neural contents of the endoneurium,
thereby reducing the size of the endoneurial space
(Kerns and Lucchinetti, 1992), and by generation of
ionic currents promoting elongation of growth cone
(Ito and Bassett, 1983; Sisken et al., 1993). Therefore,
EMF supports the development of functional integration
gradually with the ascending neural pathways on the
injured side by restoring the connectivity and reducing
the secondary injury. Further, EMF exposure promotes
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osteogenesis and probably recovery from SCI via
increase in nicotinamide adenine dinucleotide (NAD)-
specific isocitrate dehydrogenase activity and acetyl cho-
linesterase at the motor end plate, sparing of white
matter and by increasing the number of surviving
motor neurons re-establishing connections (Crowe
et al., 2003), maturation of bone trabecula, bone volume,
bone formation and decrease in lesion volume (Aaron
et al., 1990; Mert et al., 2006; Tsai et al., 2007). It induces
the differentiation of cartilage cells and enhances alkaline
phosphatase activity in rat osteoblasts (Lee and Mcleod,
2000).

Hunanyan et al. (2012) have documented that repe-
titive spinal EMF stimulation induced a long-lasting
facilitation of synaptic transmission to glutamatergic
lumbar motor neurons and hind limb muscles from
dorsal corticospinal tract and lateral white matter spinal
tracts in chronic hemi-sectioned rats. This long-term
potentiation (LTP)-like facilitation of responses were
mediated by NMDA receptors at lumbar inputs after
repetitive EMF and lasted beyond the stimulation per-
iod (Hunanyan et al., 2012). Consistent with this obser-
vation, it has been shown that activation of NMDA
receptors had a marked, positive effect on locomotion
in chronic spinal cats, and blockage of NMDA recep-
tors abolished the responses (Giroux et al., 2003).
Repetitive TMS is a non-invasive technique that
induces changes in cortical excitability at the site of
stimulation and at distant sites through descending
corticospinal outputs. Modulation of excitability at the
directly targeted brain region depends on the TMS
parameters and can result in either transient facilitation
or suppression.

Repetitive TMS in SCI patients has been suggested
as a potential important tool in the promotion of
motor recovery. It has been reported to reduce cen-
tral pain, decrease in depression, and spasticity after
SCI (Andre-Obadia et al., 2006; Defrin et al., 2007;
Fregni et al., 2006; Kang et al., 2009; Lazzaro et al.,
2002; Lefaucheur et al., 2004; Tazoe and Perez, 2015).
The functional effects of repetitive TMS are through
stimulation of corticospinal tracts that results in exci-
tation at the spinal cord level (Benito et al., 2012).
Long-lasting analgesic effect of repetitive TMS has
also been observed in patients with trigeminal neur-
algia and post-stroke pain-related syndrome (Khedr
et al., 2005). Magnetic brain stimulation also
increases the American Spinal Injury Association
(ASIA) sensory and motor scores in patients after
SCI (Belci et al., 2004). Evidence has shown that
the effects of TMS depend on the activity in
NMDA receptors (Ridding and Ziemann, 2010),
which is similar to the mechanisms involved in LTP

and depression of neurotransmission, suggesting it to
be a possible therapeutic strategy for SCI patients.
Generally, high-frequency rTMS (>5Hz) increases
corticospinal and primary motor cortex (M1) excit-
ability (Maeda et al., 2000; Valero-Cabre et al., 2001),
whereas low-frequency rTMS (<1Hz) decreases it.
Thus, both types of stimulation can result in changes
in the excitability of spinal neuronal circuits. There is
also an activation of immediate-early gene activation
in specific brain regions of rats following repetitive
TMS (Ji et al., 1998). In SCI rats, repetitive TMS has
been shown to produce motor potentials in hind
limbs. This is due to activation of extra pyramidal
sub-cortical motor pathways located in ventral and
ventrolateral white matter that are preserved after
dorsal horn spinal cord lesions (Kamida et al., 1998;
Metz et al., 2000; Simpson and Baskin, 1987).

Repetitive TMS has been used to map the cortical
representation of muscles (Levy et al., 1990) and create
recruitment curves of motor evoked potentials for
increasing facilitation in subjects with SCI. Other attri-
butes of cortical control over muscles in subjects with
SCI that can be revealed by TMS are central conduction
time of the cortico-spinal tract (Chang and Lien, 1991)
and the inhibitory circuitry that determines cortical
output (Davey et al., 1994). Chronic neuropathic pain
after SCI is associated with structural and functional
changes of both gray and white matter, which involve a
number of brain structures related to pain perception
and modulation (Moreno-Duarte et al., 2014; Yoon
et al., 2013). Most studies that investigated the effects
of repetitive TMS on neuropathic pain mainly target
the motor cortical area corresponding to the painful
zone (Defrin et al., 2007). In patients with facial pain,
repetitive TMS showed more improvement in the hand
motor cortical area than in patients with upper limb
pain (Lefaucheur et al., 2004). Lefaucheur et al. (2004)
explained this discrepancy between the sites of repeti-
tive TMS (hand cortical area) and the painful zone (face
rather than upper limb) by two mechanisms: 1, the face
area may shift toward the hand area in patients with a
facial lesion and 2, the fast rate of applied repetitive
TMS over hand area might modulate some output from
the nearby face cortical representation. Garcia-Larrea
et al. (1999) proposed the “thalamus to pain-related
structure pathway” as a mechanism of pain relief
induced by motor cortex stimulation. The activity of
projections from the primary motor cortex to the tha-
lamic nuclei is modulated by motor cortical electrical or
magnetic stimulation entailing a cascade of synaptic
events in pain-related structures including the anterior
cingulate and upper brainstem. Thus, thalamo-cortical
tract plays an important role in the pain reduction
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induced by repetitive TMS of the primary motor cortex
(Goto et al., 2008). Yilmaz et al. (2014) used 10 Hz
high-frequency TMS over the leg representation of the
M1 with chronic complete and incomplete SCI.
Patients participated in 10 days of real TMS over the
vertex for 10 days or sham TMS over the same region.
After real and sham TMS, the visual analog scale (VAS)
scores decreased.

However, only real TMS resulted in sustained reduc-
tion of the VAS for 6 weeks. Further studies system-
atically exploring the effects induced by repeated
sessions of high-frequency repetitive TMS on corticosp-
inal tract excitability in SCI are necessary to provide
further mechanistic insights and assess the clinical ben-
efits and ability to offer therapeutic benefit to patients
with SCI (Nardone et al., 2015; Tazoe and Perez, 2015).

The consequences of a SCI are devastating and the
complexity demands a multifactorial repair strategy.
ELF-EMF is a non-invasive possible potent rehabili-
tative tool for treatment of SCI. It can easily pene-
trate biological tissues painlessly, can be easily
applied by placing external coils and is clearly bior-
eactive. The FDA-approved electromagnetic devices
are now routinely used in the clinic to aid in non-
union bone fractures. It is also used in the manage-
ment of unexplained, agonizing chronic pain
syndromes and osteoporosis. Recently, reports of its
beneficial effects in spinal cord injuries, neurogenic
bowel and bladder dysfunction have started trickling

in the literature. Several studies suggest the potential
of ELF-EMF in supporting regeneration as well as in
reducing the secondary injury, thereby facilitating
functional recovery of locomotion and pain attenua-
tion after SCI (Figure 2). The mechanistic studies
suggest its action via modulating antioxidant system,
gene expression, neurotransmitter levels, ion perme-
ability and synaptic strength However, despite the
large number of studies performed so far, the exact
mechanism of EMF is still unknown. Further
research is needed to evaluate the role of ELF-EMF
parameters (low frequency, low magnitude) in clini-
cally relevant SCI model and patients. The use of
EMF is limited within animal studies and experimen-
tal situations; thus the use of EMF as a therapeutic
strategy in broad-spectrum condition still needs to be
appreciated.
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